EDICIóN GENERAL
352 meneos
5466 clics
Descubren un patrón en la aparentemente aleatoria distribución  de los números primos (ENG)

Descubren un patrón en la aparentemente aleatoria distribución de los números primos (ENG)  

Investigadores de lPrinceton descubrió recientemente un patrón extraño en el caos de los primos. Sus novedosas técnicas de modelado revelaron una sorprendente similitud entre primos y ciertos materiales cristalinos naturales, una similitud que puede tener implicaciones significativas para la física y la ciencia de los materiales. El químico teórico y profesor Salvatore Torquato tuvo una corazonada: ¿y si los números primos se modelaran como partículas atómicas? ¿Crearían también un patrón ?

| etiquetas: patrón , numeros primos
Comentarios destacados:                          
Entre primos no se dice patrón, se dice patriarca.
#1 Shhh. Patriarca/Matriarca
#1 Números primes.
#6 Númeres primes :troll:
#14 ajajaja
#1 Hay que ser primo para afirmar eso.
Dejadme adivinar: los números primos nunca son pares a partir de un mínimo. :-P
Y así, amigos, es como se descubre finalmente que sí vivimos en Matrix.
#4 Nivel 13
¿Algún criptógrafo en la sala? ¿Esto podría corromper algún sistema de cifrado?
#5 Yo no lo soy, pero si se pueden obtener cualquier primo de manera sencilla, la seguridad está jodida.
#5 Si te lees el artículo, te lo dice, de haber un patrón que facilitase encontrarlos sería un problema para RSA y compañía, pero sería terminarlos de matar, lo que les matará es el ordenador cuántico.
Con respecto al patrón, lo que dice no es que encuentren un patrón que pueda predecir números primos, dicen que han encontrado una similaridad entre los primos y la espectrografía en rayos x de algunos cristales y cuasicristales, eso no supone un problema para la dificultad de encontrar números…   » ver todo el comentario
#77 Que se vaya a crear un ordenador cuántico con la capacidad de romper cifrados no es un hecho.
#80 Pero está en camino, ya hay incluso algoritmos para romperlo preparados para cuando esté.
#89 Puede que no lo esté nunca. No hay ninguna prueba de que crear un ordenador cuántico de ese ese nivel sea posible.
#93 No ha de ser muy imposible cuando hasta Intel está metiendo dinero en eso es.wikipedia.org/wiki/Computación_cuántica#2013_-_Computadora_cuánt
#96 Muchas compañías estan metiendo dinero por la posibilidad de que pueda conseguirse. Pero eso no implica que sea posible.
#98 Pues ya hay por ahí circulando los primeros prototipos y todo.
#99 Ya existen ordenadores con chips cuánticos. De hecho hace muy poco se rompió el record de qbits que había conseguido Google:

www.microsiervos.com/archivo/ordenadores/chip-128-qubits-rigetti-compu

Todo muy prometedor. Pero como te digo, la gente que trabaja en quantum computing saben que todo esto puede ser una carrera hacia la nada. Afirmar que es seguro que construiremos ordenadores cuánticos con capacidades de calculo astronomicas es erroneo.
#80 no lo sabemos. Si yo inventarse la forma de romper cifrados no iría cantándolo a los cuatro vientos.
#77 hay varias técnicas de cifrado resistentes a computación cuántica. Siempre será más fácil cifrar que descifrar, así que eso no va a ser un problema.
#87 Sí, sé que hay nuevos cifrados que resistirían a la computación cuántica, pero no son RSA, que es el más extendido hoy día.
#9 ¿Y dejarían de funcionar los cajeros automáticos y todas las comunicaciones bancarias? ¿Sería el Apocalipisis?

#18 #25 #30
#5 RSA para empezar caería. De todas formas ya han salido otros iluminados diciendo que se podían factorizar claves RSA, hasta que no lo vea, sea utilizable y pase las revisiones correspondientes, nada. Puro FUD.
#18 ¿De qué modo caería RSA? No veo cómo ayudaría este hallazgo a resolver el problema de la factorización en un tiempo razonable.
#36 yendo de abajo arriba. Los números primos altos son escasos y difíciles de encontrar, por eso están patentados y almacenados en secreto. Conociendo la lista, estos números serían descubiertos casi inmediatamente, así que...
#57 O sea, probando a base de multiplicar número primos ascendentes, ¿no? ¿crees que algo así sería rápido?
#58 hombre, computacionalmente hablando sería prácticamente Immediato (complejidad n^2, con muy pocos valores y sin optimizar nada). O bien desde arriba, dividiendo por los primos conocidos.

Otra cosa es si realmente los primos cumplen este patrón, que es lo que dudo hasta que no lo vea en alguna revista con más prestigio que Vice.

Aunque el patrón no sea exacto y solo apunte a una región, haría la búsqueda de primos muchísimo, pero muchísimo más fácil.
#67 Vale, ¡muchas gracias por los comentarios!
#5 El que tengo aquí colgado :troll:
#5 Los números primos siguen siendo "aleatorios". Son los ciertos materiales cristalinos naturales los que siguen a los primos y no al revés. Por tanto, no, los cifrados no se ven afectados.
#5 no hablan (por ahora) de patrones Fórmulas matemáticas aunque si.

Vendrían a ser patrones visuales / de ubicación al ordenar los números como determinadas formas que producen los cristales por ejemplo. Eso llevaría a fórmulas matemáticas que en efecto pondrían en jaque los rsa, etc......

Cc: #24 #27
#24 Si sigue un patrón no pueden ser aleatorios. Si los cristales imitan a los primos con un patrón significa que los primos tienen un patrón.
#74 Los primos son sólo "aleatorios" excepto por su propia definición ( sólo divisible por él mismo y por la unidad ). Esta definición es en sí misma un patrón. Pero un patrón de un tipo que no permite calcular el siguiente primo de manera sencilla, no permitiendo usar inducción, por ejemplo, dando aspecto de aleatoriedad.

Por tanto la naturaleza puede seguir los número primos sin que nos facilite un patrón más sencillo y distinto a los conocidos.
Por ejemplo, el cristal podría estar…   » ver todo el comentario
#5 Joder, es lo primero que he pensado. Eso podría cargarse la seguridad de los sistemas de clave compartida.
#25 No todos.
Vamos, que no. Que si lo hubiese ya lo habría publicado. Justamente lo han investigado y no han encontrado una mierda.

Yo estoy investigando para curar el cáncer y creo que la solución podría estar en el culo de los burros, dadme crédito!
#7 ¿Que crédito te vamos a dar, si la investigación la estas llevando como el culo? :troll:
#26 mierda de investigación, llevada como el culo y a lo burro :hug: :troll:
#7 en el culo de los burros hay Grafeno.

Pd: sabes menos de números que de burros!!!
'...técnicas de modelado revelaron una sorprendente similitud entre primos y ciertos materiales cristalinos naturales...'

Los números primos infringiendo los 'derechos de autor' de ciertos materiales cristalinos naturales. Ni se os ocurra enlazarles...

PD. #EU_COPYRIGHT_INTERNET_CENSURE_2018_2019 Por no representar no representan ni a sus respectivas familias.
Si esto es verdad se va a tomar por el culo toda la criptografía junto con todas las criptomonedas.
#11 las criptomonedas es lo de menos, todo internet dejaría de ser un lugar seguro, empezando por las transferencias bancarias xD
#22 Totalmente de acuerdo. :-D
#11 las VPN pasarían a ser VPN (Virtual Public Network) :troll:
Me cuesta aceptar experimentos físicos sin demostración lógica en teoría de números.
#13 Además, es sólo un experimento, habría que esperar la revisión por pares y demás, y no me termina de convencer demasiado que lo hagan todo con simulaciones.
Hay que tener en cuenta que el que publica, siempre interpreta todo de forma más optimista. Y teniendo en cuenta que a mí nunca me ha convencido lo de "los números están en la naturaleza", para qué voy a dar mi opinión... xD

Pero ojalá siginificase algo.
#16 los números están implícitos en la naturaleza. Ejemplos claros son PI y el número áureo.

Si te apetece saber al respecto (y a la vez descubrir muchas conexiones) youtu.be/Z4sy0qWMQq0
#45 Gracias. Lo miraré a ver. Lo decía porque muchas veces en vídeos divulgativos me parece que "buscan demasiado" con tal de atraer a los menos interesados en matemáticas.
#50 este Docu Mola porque pone en valor las opiniones de científicos “no egiptologos” hacia la mitad hablan de las dimensiones y relaciones de medidas pi codo etc.... realmente a tener en cuenta
#64 no son espirales. Eso era una reducción básica. La espiral es una forma básica y que lleva detrás una ecuación matemática

#59 explica genial el concepto y en una frase.

Los cristales suelen ser estructuras fractales (una parte de si misma se repite para formarse a sí misma)
Este vídeo te dará una idea
youtu.be/BTiZD7p_oTc

La cuestión anda detrás de si al conocer ciertos patrones físicos que se pueden obtener a partir de las estructuras, ayudarían a calcular de una manera mucho…   » ver todo el comentario
#66 Gracias!! :-)
#66 Justo estaba leyendo un libro sobre fractales en la naturaleza.
#16 #35 #32 #33 #34
por cierto , disfruten ;)


es.wikipedia.org/wiki/Geometría_sagrada

Si sigues tirando del hilo hay muchas cosas curiosas

Los crop circles en 3d
youtu.be/A7U2H8N5kP8

Dan pistas sobre:

El confinamiento magnético (sistemas toroidales)

science.howstuffworks.com/fusion-reactor3.htm

El campo magnético
hyperphysics.phy-astr.gsu.edu/hbasees/magnetic/MagEarth.html

Estructuras de emisión de microondas junto a radio telescopios..
www.pinterest.es/amp/pin/484207397414063322/

Estructuras fractales/cristalinas ..... qué curioso no???? Qué locos están estos romanos .....
#54
Los círculos de las cosechas es una forma de arte y no dan más pistas que el trabajo artístico de sus autores

El más famoso y complejo de todos: www.youtube.com/watch?v=rtkMrNrEMLM

Estás mezclando cosas diferentes cuyos patrones son diferentes y existen por razones diferentes

Creo que has liado la madeja demasiado, vamos...
#91 Ese no es el más complejo ni de lejos. Creo que te dejas mucha información de lado.

En primer lugar, hay hasta empresas y artistas que cobran por ello pero se sabe cuáles SÍ SON HECHOS A MANO y cuáles no (porque hay estudios, no tonterías)

Hasta ahora la teoría y las pruebas (científicas) demuestran que hay rastros del uso de microondas, si bien no se han conseguido los mismos resultados cuando se han intentado reproducir (lo intentaron los del MIT)

1- los medios (con michio kaku) hace…   » ver todo el comentario
#107
**
#91 Ese no es el más complejo ni de lejos. Creo que te dejas mucha información de lado.
*
Crees demasiado y mal
¿me muestras otro más complejo? a no...

todoscontraelarte.blogspot.com/2013/12/land-art-en-la-nieve.html

Por ejemplo

Tu no has estudiado esto sino que has buscado aquello que se ajustara a una visión de esto.
No es lo mismo

Esto es una forma de arte y muestra lo que desean mostrar sus autores
Todo lo que hay ahí es arte sobre cosas que son conocidas fractales, etc

Que tu las veas en el land art y te inspire porque no las conocías fuera de ahí y creas que los círculos de las cosechas contienen alguna relvelación ET o algo así es tu problema

Son humanos y bien humanos y es arte humano
Estamos hablando de primos en el sistema decimal. Eso dentro de la naturaleza, de la ciencia física o química, es tan relativo como encontrar un patrón en el peso en libras de las partículas subatómicas. WTF.
#17 No tiene nada que ver con que sea decimal o no, es independiente de la base. Un ordenador funciona en binario y las matemáticas son las mismas.
#29 Sí tiene que ver, no sólo nos centramos en el conjunto de números naturales y su representación sino que entran más factores, como la operación definida y el concepto de divisibilidad. Para el ámbito práctico de la computación y la encriptación de comunicaciones es lo que es, pero no creo que exista ese patrón natural más allá de lo que explico en #37
#41 Tu mismo... si eso explicaselo a los de artículo, a los del estudio y a todos los matemáticos del mundo.

Si tienes razon igual hasta ganas un Nobel.
#42 Eso, mejor deja estas cosas a los que sabemos. :troll:
#43 Afortunadamente vivo fuera de España, donde "aparentar seguridad" en lo que se dice no significa absolutamente nada (si no es algo directamente negativo).
#47 Aquí se llaman cuñaos y son mayormente los que se dedican a la política y gobiernan. Una gran mayoría de los españoles les votan. xD
#48 Claro claro, solo los políticos y los cuñaos. Que bien vienen las cabezas de turco para no aceptar la realidad.
#49 Claro, como tu afortunadamente estás fuera de España, no te afecta la "realidad". xD
#51 No me afecta la picaresca, cosa muy distinta.
#42 ya hay que ser bueno para ganar un novel en matemáticas xD
#41 Si se da en cualquier base y la operación y las reglas no dependen de la base el patrón está ahí. Solo que se pueda ver igual o diferente cambiando la base
#92 No me expresé correctamente. Pido perdón. Lo que quería exponer era que la visión antropocentrista de las matemáticas, no solo de números primos como concepto sino de "representación y distribución" de números primos en ciertas formas cristalinas no tenía sentido como "medición". No es lo mismo. Un patrón en la distribución sí puede depender de la base, del conjunto que usemos, de la operación que defina el concepto de divisibilidad y de mucho más. ¿Cuántos números…   » ver todo el comentario
#100 El problema es que la naturaleza no usa un tipo de matemática exactamente. Es decir la matemática y la lógica es un lenguaje, si es suficientemente potente la naturaleza estará dentro de lo que se pueda decir con ese lenguaje y tal vez alguien diga que la naturaleza usa esa matemática y si no es suficientemente potente no podremos referirnos a propiedades de la naturaleza

Más que la naturaleza use una u otra matemática es más bien lo potente que esta sea y ver como la podemos mejorar,…   » ver todo el comentario
#100 los conceptos como las formas geométricas no son abstractas. Los conceptos matemáticos apenas son los números aquí... encontrar una relación quizá ayuda a comprobar si la naturaleza se guia por esas reglas.

No hay nada antropocentrico!!!
#17 No, no se habla de primos en el sistema decimal. Se habla de números primos en el ámbito de los números enteros, que no es más que una sucesión de elementos ordenados, independientemente del nombre que les quieras poner a cada uno de dichos elementos.

Los números primos se calculan normalmente en binario, ya que se hace con ordenadores, pero tampoco quiere decir que sean primos en el sistema binario: un número primo es primo independientemente del sistema de numeración que utilices. Lo que…   » ver todo el comentario
#32 Las estructuras algebraicas y los sistemas de numeración, así como las operaciones definidas en los diferentes conjuntos de números (aquí hablamos de números naturales), marcan la diferencia entre unos y otros. Lo que indica el estudio es que existen "constelaciones" de números primos que marcan un patrón en su distribución, pero claro, sólo se puede comprobar en sus primeros conjuntos, que es donde se da la mayor concentración de números. Quiero decir con esto que el patrón no…   » ver todo el comentario
#37 El concepto de divisibilidad para números enteros y naturales no es relativo, está perfectamente definido. Cuando se definen los conjuntos de los números naturales, enteros, racionales, reales y complejos nunca se menciona el sistema de numeración, sólo las propiedades que deben cumplir los conjuntos y las operaciones.
#69 Hablamos entonces solo de los primos que se usan para algoritmos de encriptación, que son los que dan dinerito. De acuerdo.
#73 Hablamos de números primos, y punto. Los que se usan para encriptación simplemente son muy grandes, para que el producto sea difícil de factorizar, pero nada te impide implementar un cifrado RSA con primos de dos dígitos :-P
#17 Los números primos son primos en cualquier base de numeración en los que los representes.
#17 Los números primos, como te han dicho, son primos en cualquier sistema de numeración. La definición es que son números enteros que solo se pueden dividir entre ellos mismos y 1. Lo que cambia la base de un sistema de numeración es la representación del número, no el número ni sus propiedades. Así, 5 puede representarse como 101 en binario, o V en números romanos, pero sigue siendo un número entero que solo puede dividirse entre sí mismo y 1 (una división teniendo como resultado un

…   » ver todo el comentario
#17 Me estás diciendo que no existen los mismos números primos en sistemas octales o hexadecimales?
Es decir, el mismo número expresado en otra base numérica pasa a se divisible por otro número entero que no sea 1 o si mismo?
Un patron en los numeros primos es super importante, y dice el articulo que no. Para criptografia o comprension por ejemplo.
Al patrón se le respeta >:-( gonorreas
Mientras no se descubra f(n) = n-ésimo primo, poca novedad.
#23 f(n) = n-ésimo primo es un procedimiento perfectamente descubierto y definido en las matematicas. Ahora llegar a el número primo enésimo de momento es inpensable desde el punto de vista computacional. Lo que se buscan son definciones que mejoren un poco los metodos, para que no sean tan a fuerza bruta y ganar algo de tiempo.

Es como si quieres llegar a obener la enesima cifra de pi. El numero pi esta perfectamente definido, hay miles de series de potencias y algunas llegan antes y otras llegan despues, pero si queires saber la enesima cifra de pi, y n es muy grande, pues es muy chungo llegar por mucho ordenador que tengas.

{0x1f33f}
#33

" si queires saber la enesima cifra de pi, y n es muy grande, pues es muy chungo llegar por mucho ordenador que tengas."

Me temo que no ¿eh?
Es decir, se puede obtener la cifra de PI en el lugar millones de trillones con un cálculo que se tarde muy poco.

en.wikipedia.org/wiki/Pi#Spigot_algorithms

Bueno, es cierto que ahí he jugado un poco con la ambigüedad, ya que ese método sirve para cifras binarias, hexadecimales, octales... pero todavía no se ha…   » ver todo el comentario
#65 Pero es que matemáticamente la función del primo enésimo se conoce y es un problema resuelto, se puede demostrar que es una función biyectiva con el conjunto de números naturales. El 2 es primo, El 3 es primo porque no es divisible por 2, El 4 no es primo porque es divisible por 2, El 5 es primo porque no es divisible por ni por 2 ni por 3, El 6 no es primo porque divisible por 2...., ya tenemos los tres primeros primos 1->2 , 2->3 y 3-> 5. En general con n y tiempo suficiente y…   » ver todo el comentario
#68 Es "spigot", palabra inglesa que significaría "grifo", "espita" o "dispensador" ...

Supongo que le pusieron ese nombre porque obtener decimales con ese método es como abrir el "grifo" y tener tantos como quieras, sin una gran 'elaboración', sin esperar mucho... los tienes ahí disponibles como el que tiene 'agua corriente' en su casa, o un dispensador de cerveza.
#68 Es posible que me esté explicando mal y que deba añadir que f(n) no incluya un término recursivo. No soy matemático, pero lo que quiero decir es que por ej. sé que f(x) = y representa una recta en un espacio bidimensional y que no existe una representación directa que no requiera de más de un cálculo semejante a esa función para los primos. Y básicamente lo sé porque el día que esa función exista se acabó la criptografía como la conocemos.
#33 Una cosa es que se conozca un método para encontrar primos (eg criba Eratóstenes, un ejercicio trivial que programamos en primero de carrera) y otra es que se conozca una función que calcule cualquier primo.
Si hablamos de un sistema de numeración cuyos múltiplos se basan en unidades iguales de las piezas que has colocado antes en tu torre de “conocidos”, y siempre se colocan en el mismo orden, innegablemente existirá un patrón.

La cuestión es si son patrones múltiples que se interconectan dependiendo de considerar ordenaciones en matrices de 10x10, de 4x2, etc etc.....

El patrón aparecerá en cuanto el marco de referencia sea el correcto....

Vamos, que nunca me había planteado el hecho, pero…   » ver todo el comentario
#27 Ya, pero me temo que este es un tema que se lleva estudiando desde la Grecia clásica, los grandes matemáticos de la historia no han sido capaz de descifrar ese patrón, y tan indescifrable parece que los sistemas de cifrado de máxima seguridad se basan en la dificultad de encontrar ciertos números primos, ya que se desconoce el patrón que siguen (y se cuenta con que es algo que "nunca" se conocerá).
#35 1,2,3 responda otra vez

¿los grandes matemáticos clásicos disponían de sistemas de cálculo de petaflops para poder organizar diferentes modelos tridimensionales ?

Cuando no se podía volar, eran dioses pájaro no?? Y ahora tenemos drones de bolsillo.

Te veo open mind eh!!!
#38 Ah, bueno, si un problema analítico simplemente se resuelve haciendo cálculos, entonces no sé por qué sigue habiendo problemas sin resolver. Es más, no entiendo que las empresas de seguridad basen sus métodos de encriptados en modelos que llevarían miles o millones de años en resolver usando cálculos de fuerza bruta (con la tecnología actual). Porque claro, con tanto petaflop, uno sencillamente haya la fórmula, así, sin más, y luego ya la aplica en microsegundos. Además no sé qué pinta un…   » ver todo el comentario
#53 y entonces xq te están diciendo que parece haber una relación con determinados cristales??? ........... porque ESO es por lo que estamos aquí... vaya, digo yo.....
#55 El artículo dice que ven unos patrones de refracción en unos cristales que parecen seguir el modelo de los números primos. Eso indica que podría haber alguna relación entre la estructura interna de estos cristales y los números primos, pero nada más. Muchos fenómenos naturales tienen como base el número e, el áureo, estructuras fractales o la sucesión de Fibonacci. Señal de que dichos conceptos matemáticos son importantes porque efectivamente se dan en la naturaleza. Eres tú el que ha…   » ver todo el comentario
#59 ??? no te das cuenta que estoy diciendo justamente eso que dices?? Has leído mis comentarios? Maño!! Que estoy encantado de hablar estas cosas!! Hasta he puesto un documental y he pegado enlaces de geometría sagrada etc!! Nadie ha dicho que sea fácil ni que seas un pringado....

Sólo que estar diciendo que “como lo han estudiado mucho y hasta ahora no han conseguido nada” blablablabla.....
Sólo he criticado que parece un prejuicio antes de valorar los resultados ...

Creo que cuando…   » ver todo el comentario
#59 y sí, se le lleva ocurriendo muchos años a la gente, y ahora por fin conocemos los suficiente de óptica, cristalografía y matemáticas , además de tener las capacidades de cálculo necesarias, y por tanto, es el momento en que dicha convergencia de conocimiento nos lleva a un avance .......
#53 pd: el ejemplo de la espiral es “una reducción” si quieres hablams de geometrías complejas un domingo de mañana ! :-)
#27 estoy intentando entender algo de esta noticia y me cuesta mucho. ¿Qué significa "poner números en una espiral"? ¿De qué tipo de representación estamos hablando? Porque en el artículo hablan de que se representaron con ayuda de un sistema informático, pero ¿en qué consiste tal representación?
Esto sí es un notición.

Antes se habían encontrado ciertos patrones, como la espiral de Ulam, o la espiral de Stacks, pero encontrar un patrón como un fractal, que además esté relacionado con la física va mucho más allá.
#34 qué te juegas a que tiene que ver con esto

es.wikipedia.org/wiki/Geometría_sagrada

Me juego una cena. El día que digan algo, te invito si no es así
#46 Si no es así como no se va a decir nada pues no va a haber invitación
Pero no es así. Los patrones no tienen nada que ver. Son otras cosas :-P
#85 busca Info sobre crop circles 3d

Venga vale , te la busco yo, que me mola xD

www.youtube.com/watch?v=_ZQibpfP8QQ


Hay fractales, hay cristales, hay campos magnéticos, de microondas, toroides tipo tokamak con patrones que cuadran con el confinamiento magnético ..... q cosas......


en.wikipedia.org/wiki/Tokamak
yo diría que los números primos tendrán sentido (patrón, whatever) sólo tetradimensionalmente
hace muchos años que es conocido y se ve cuando se ponen dibujados en su posición en una espiral. No es algo regular pero al verla de lejos parece claramente "algo" no al azar sino como una estructura extraña

es.wikipedia.org/wiki/Espiral_de_Ulam

www.google.com/search?q=Espiral+de+ulam&client=firefox-b&sourc
#81. La espiral de Sacks tiene una pinta incluso más llamativa, relacionada con ese misma de Ulam:
es.m.wikipedia.org/wiki/Espiral_de_Sacks
#86 sip. Es muy muy interesante y llamativa. No me he acordado y la ha puesto Pocapiedra antes que yo
Sagan indicaba que no hay proceso físico que produzca números primos y lo usó como marca de artificialidad de la señal en contact. Pero raro raro es ese tipo de detalles...
#88. Yo me imagino que ya se le habrá ocurrido a alguien representarlos de las maneras más variadas: espirales poligonales de todos los grados, en tres o más dimensiones, etc etc.

Como comentaba alguien por ahí arriba, siquiera adivinar un atisbo de patrón geométrico en toda la sucesión sería como rozar con los deditos la urdimbre primordial -o una de ellas- de nuestra realidad física...
#95 Pues ni si ni no Creo
parece que ahí hay algo pero..

Pero lo que se va encontrando son simetrías, equivalencias entre cosas que aparentemente no tienen nada que ver por ser construcciones matemáticas o geométricas sin relación aparente alguna en su origen etc pero están apareciendo más y más equivalencias y simetrías entre cosas muy aparentemente lejas entre sí...

Y este creo que es el punto porque esas simetriís están apareciendo en los modelos de cuerdas

No creo que sea una urdimbre primordial sino una pieza más del puzzle en este caso
#88 #86 pues no os digo que me dedico a encontrar patrones en datos .... (llamadas de curro, hace años.....)

Me refiero a estas cosas, los valores por ejemplo que pudieran representar las áreas entre dos espirales que avanzan de manera conjunta, dividiendo en diferentes puntos X, como tejas seguidas, podrían ser por ejemplo esos números, igual que la derivada es la pendiente y la integral el area....

No son cosas descabelladas .... lo descabellado es no entender que detrás de todo esto hay un conocimiento que nos lleva a entender el ordenamiento real de las cosas, de los patrones del caos...... del no libre albedrío, de los patrones de filamentos de galaxias ..... ;) (esa última es una opinión q siempre
He tenido al dar vueltas ....)
#88 cuando leí la noticia , fue lo primero que recordé ja ja , "la firma del artista" pero como siempre ,tan solo aparece una capa más de complejidad ...
El Diseñador Inteligente
#94 jajajajaja lo más bonito es que las matemáticas son independientes de la existencia de ningún Dios
«12
comentarios cerrados

menéame