CULTURA, CIENCIA, DIVULGACIóN
215 meneos
10001 clics
Cómo conseguir un reparto justo, desde un alquiler hasta una herencia

Cómo conseguir un reparto justo, desde un alquiler hasta una herencia

Vais a compartir piso. Toca distribuir habitaciones y decidir cómo repartir el precio. Quizá penséis dividir el precio en partes iguales, pero ¿y si una habitación es bastante más grande que las otras? Podríais pagar según los metros cuadrados, pero ¿y si nadie quiere pagar más por la habitación más grande? Estas aplicaciones interactivas usan matemáticas para que encuentres, de forma cómoda, un reparto justo que deje contento a todo el mundo.

| etiquetas: matemáticas , alquiler , herencia , reparto justo , cultura , ciencia
84 131 4 K 446
84 131 4 K 446
Técnica familia numerosas: "tu partes y yo elijo".

Se acabó el problema.
#1 Pero la partición ya ha sido realizada por una tercera persona (el arquitecto), el problema consiste en qué elegir una vez dicha partición ha sido hecha.
#3 Falta por partir el precio.

Que es lo que hace el problema.

Habitación A 275€, habitación B 300€, habitación C 425€.

Yo parto los precios, tu elijes.


por no mencionar que el problema del artículo llega a una conclusión que es inaceptable por parte de uno de los integrantes "Alicia prefiere la habitación de la derecha, la más grande, pero no puede pagar más de 300 euros al mes. De las otras dos habitaciones prefiere la de la izquierda." (Y acaba pagando 333,33).

Y que ignora…   » ver todo el comentario
#4 En el ejemplo Alicia acaba pagando 333,33 porque ha aceptado pagar 200 (por la habitación que al final se le asigna) y también ha aceptado un sobrecoste de 200 euros (en el artículo se avisa de que es poco realista).

El ejemplo del artículo está elegido para que las matemáticas no resulten aún más farragosas. En lugar de obsesionarse con ese ejemplo, recomiendo ir a las aplicaciones y probar en ellas con otros ejemplos. En The New York Times no la han criticado tanto ;)
#5 Hola de nuevo.

Acabo de usar la aplicación del NYtimes. También va mal, y desde luego el trato no es justo.

He creado las siguientes reglas:

inquilino 1: no puede pagar más de 300€ si le dejan elegir elije la habitación A si está en su presupuesto, después B si está en su presupuesto y sino C

Inquilino 2: quiere la A a cualquier precio (a no ser que otra habitación sea gratis).

Inquilino 3: no puede pagar más de 300€ si le dejan elegir elije la habitación A si está en su presupuesto,…   » ver todo el comentario
#5 JUAS!

Esta vez si que me ha pillado.

5 inquilinos.

El 1 quiere la hab A a cualquier precio.

El 2 quiere la habitación A a cualquier precio
(Esperaba generar un conflicto aquí).

El 3 al hab B a cualquier precio.

El 4 cualquiera que no cueste más de 300 por este orden: A,b,c,d,e

El 5 cualquiera que no cueste más de 300 por este orden: A,b,c,d,e

Resultado:

Roommate A
Room 5
$12.50
Roommate B
Room 1
$321.88
Roommate C
Room 2
$309.38
Roommate D
Room 3
$309.38
Roommate E
Room 4
$46.88

Pero lo gordo del asunto es que ha resuelto el problema sin preguntar a A ninguna pregunta!!.

Honestamente... esto va BASTANTE mal.
#7 Para poder depurar la aplicación haría falta ver las preguntas y respuestas intermedias, además del input y el output. No sé si proponerte que pruebes con la otra aplicación, que usa otro método :-)

Sobre el número de iteraciones: En lugar de preguntar por el sobrecoste aceptado, la aplicación elige uno por su cuenta, calcula con él una propuesta y pregunta. Si no se acepta, elige un sobrecoste más pequeño y vuelve a iterar (en la malla, eso significa que aparecen más triángulos).
#9 Entiéndeme: Si yo soy ingeniero, entiendo la validez de las herramientas matemáticas y las intento aplicar.

Pero soy ingeniero y sé que cuando aplicas una herramienta matemática la mundo real, revienta casi siempre. Y es más, cuando tratas con personas las herramientas matemáticas no funcionan (directamente).

Estoy seguro de que le han dado la habitación 5 a A en el ejemplo por que el método ha entendido que la elegía seguro por tener coste "0" más un sobrecoste aceptable.

Y…   » ver todo el comentario
#11 Te entiendo de sobra, hace tiempo escribí (también está por aquí) sobre las dificultades de llevar las matemáticas a la práctica.
Pero, insisto, el método se basa en las respuestas a las preguntas intermedias. Sin ver éstas, es imposible saber si la solución es una mierda o no, porque es imposible saber cuánto se amolda a lo que le han ido pidiendo.
#12 Lo siento pero no estoy de acuerdo.

El método es el método y lo que importa es el resultado final. Si el método ha obtenido una respuesta coherente para las preguntas que el método ha hecho, pero el resultado es malo.

Es que el método no ha hecho las preguntas adecuadas.

Ejemplo:

A, B y C quieren elegir el color de un coche.

Preferencias:

A: Verde, rojo, Amarillo, negro.
B: Verde, rojo, negro, amarillo.
C: Verde, amarillo, rojo, negro.

Método:

¿Entre los colores rojo, marrón y…   » ver todo el comentario
#13 Pues lo siento, pero yo tampoco estoy de acuerdo. El método se basa en que las respuestas sean consistentes. En los comentarios del blog han puesto un ejemplo completo, que sí incluye las respuestas, y el problema estaba en que éstas eran contradictorias cifrasyteclas.com/2015/03/23/como-conseguir-un-reparto-justo-desde-un-
#14 Aquí tienes:

Te pongo las reglas:

El 1 y quiere la hab A a cualquier precio, es más está dispuesto a pagar el alquiler entero para tenerla (1000€) y no le importa incluso correr con los gastos corrientes y de manutención de sus hermanos por que le ha tocado el euromillon la semana pasada.

El 2 quiere la habitación A, pero solo está dispuesto a pagar 800€ por ella, sino elije la que cueste menos de 800 b,c,d,e por ese orden

El 3 la hab B sino cuesta más de 500e sino elije a,c,d,e la que…   » ver todo el comentario
#15 Creo que hay un problema con tus reglas, estás cambiando números y letras. En la aplicación (ver el enlace) las habitaciones son 1,2,3,4,5 y los inquilinos son A,B,C,D,E.
#16 Te agarras a un clavo ardiendo ¿eh?.

¿Que más da?

Ahí tienes nomenclatura correcta: nyti.ms/1Hva9bL

Te pediría que no me hagas simularlo otra vez y que lo simules tu.

Insisto: a A no se le pregunta nunca.
#17 Cuando dices que "a A no se le pregunta nunca" entiendo que quieres decir que "a 1 no se le pregunta nunca".
Sin embargo, la primera pregunta es para 1, al que ofrecen la habitación E por $0.00 y la elige.
Aquí está el quid de la cuestión; el método asume (está en el artículo) que "Todos los inquilinos prefieren una habitación gratis antes que pagar por cualquier otra". Ése es el motivo de que no funcione en este ejemplo.
No me agarro a nada, solo intento entender lo que pasa.
#18 Sabía que me ibas a decir eso.

No es cierto. A mi no se me ha preguntado eso.

Deberías de saber que tu método adopta esas respuestas de forma automática.

Todas las respuestas que el método da por una habitación por "0" las adopta el método automáticamente.

Yo no te digo que el método no ejecute sus reglas correctamente, que me parece genial. Lo que digo es que las reglas del método no obtienen un resultado válido.

También te dije hace unos posts que: "Estoy seguro de que…   » ver todo el comentario
#20 Ni el método es mío ni digo que sea ideal. Solo intento explicar cómo funciona. Al que no le guste, que no lo use. Cambio y corto.
#21 pues nada, cambio y corto.

Por cierto, sé como mejorarlo ¿eh?. Perfecto no va a quedar, pero sé como solucionar los problemas que te he comentado.

Hay que ser un poco científico y cuando una persona te demuestra que algo no funciona, en lugar de cerrarse en banda hay que abrir la mente y preguntarse como mejorarlo.

Eso es ciencia.

Cerrarse en banda es religión.
#23 Una de las hipótesis del método es que si una habitación es gratis, supone que será elegida. Y esto lo dice al principio. Si en tu ejemplo esto no se cumple, pues el método no funciona. Es como los métodos de descomposición matricial, si tu matriz no cumple ciertas características algunos métodos simplemente no funcionan, y esto no quiere decir que el método esté mal!
#40 Fíjate bien en los ejemplos y en la conversación que lo del cero está asumido.

No es el mayor de los problemas. (ni mucho menos)
#4 La web que proponen www.spliddit.org/apps/rent está bastante bien.
#1 #2 nunca había pensado en eso, pero me da la sensación de que es mejor elegir. :-)
#1 Y si hay más de 2 personas?
Ahí es cuando hace falta este artículo

recomiendo el primer enlace (spliddit)
nunca lo he probado "en vivo" pero pinta bastante bien
#1 Muy facil, se reparte las habitaciones a suerte. Se pone en un papel una letra, a-b-c

La habitacion A (izquierda) es la mas pequeña: Le toca limpiar el salón despues de comer y las ventanas 1 vez al mes (en caso de que no esten muy sucios)
La habitacion B (centro) la normal: Le toca limpiar la cocina despues de comer y limpiar el polvo de la casa 1 vez en semana
La habitacion C (Derecha) la grande: Le toca limpiar el baño 3 vez en semana (Los derrapes los limpia cada uno...) y fregar la casa 1 vez a la semana

Hacer de comer y hacer la compra a partes iguales

Asunto resuelto.
#33 Tambien se puede elegir la habitacion C sin sorteo si alguien la quiere ya que es la mas cara pero eso si, a razon de mas cara hará menos por la limpieza semanal y la mas barata tendrá que hacer mas para compensar la diferencia de pago
#1 Sí, es la mejor. El que parte se asegura de hacerlo bien, porque el que elige es otro.
#1 Eso solo funciona si el reparto es entre dos personas (es lo que yo hago con mi hermana normalmente). Pero si es entre tres, ¿cómo lo haces? ¿uno parte y dos eligen? Así, los dos que eligen tienen que ponerse de acuerdo, y llegas otra vezs al mismo problema.
#45 El primero corta lo que considera que es un tercio de la tarta. El segundo elige o quedarse ese trozo o cortar el que queda en dos.

Si se queda el primer trozo el tercer individuo corta en 2 el que queda y la primera persona elige.

Y si la segunda persona elige cortar el trozo que queda, el tercer individuo elige su porcion, luego el primero y finalmente elige el segundo.

Y asi es extendible a N personas.
#47 Efectivamente!
#47 ¡Qué bueno!
#1 He visto la misma técnica en los parques repartiendo lo que quedaba de c*st* :-P
Uno hace las porciones equitativas y el otro empieza a elegir.
Joder el susto que me he pegado al ver MI piso en el thumbnail de la noticia (y luego en la noticia), he visto que han respetado la licencia CC :-)
#38 Eso siempre, ¡gracias por hacer disponible la imagen! :-)
Vaya desilusión de post.

Tanto rollo con los triangulitos, las fórmulas y las condiciones para terminar dividiendo el alquiler entre tres y pagar cada uno un tercio...
no lo entiendo. se monta un pollo de la ostia para acabar haciendo un 1000/3. me gustaria pensar que el pavo ha escogido mal el problema a representar y que en otras condiciones el trabajo da su fruto.
¡Pero si está fatal! Al final Alicia paga más de 300 euros y encima no está en su habitación preferida, que sí tiene Benito por el mismo precio.
Sin pretender espoilorear... Joder con Benito! Les ha liado bien.
Tanto calculo para al final llegar all 1000/3? Pobre ejemplo de como aplicar un simplex.
Lo mejor es "uno hace las particiones y el otro elije primero". Ya se asegurará el que hace las partes de que sean justas, ya que la peor irá para el. Si son 3 elije el último.
Siempre se puede usar el método de echarlo a suertes:
¿quien tiene la suerte de ser hijo del dueño? ;)
Entonces Benito tiene una habitación casi el doble que la de Alicia y pagan lo mismo.
Un reparto justísimo y todo gracias a las matemáticas y los grafos.
No sé... he hecho una simulación de 3 componentes eligiendo lo barato siempre y me sale que el primer inquilino siempre paga menos. Algo debo de haber hecho mal.
Pero eso vale para dos!
El mejor método es sacársela del pantalón y el que la tenga más larga elige.
Je, je. Intentad poner todos estos cipostios en un clausulado de un contrato de alquiler y ríete tú de la parte contratante de la parte contratante de los Marx.
menuda mierda de articulo... tanta tonteria de triangulos, matematicas y colorines para, al final, ir 'a pachas' (a partes iguales).
En mi casa las habitaciones las elegimos por orden de llegada, el que llega nuevo obviamente sólo puede elegir la disponible si quiere venir, pero cuando se va alguno se puede elegir por orden de llegada cambiarse a la del que se va.

Para decidir el precio, cada uno paga los metros cuadrados de su habitación y la parte proporcional de las zonas compartidas. P.ej. para compartidiendo entre 3 teniendo una habitación de 20m² y 30m² de zonas comunes: 20m² + 30m²/3 = 30m² a pagar.
#28 Yo lo empecé a hacer al ir de viaje a casas rurales, porque al final las parejas siempre iban a las mejores habitaciones y el resto a lo que sobraba e incluso al sofá, y obviamente por el mismo precio no me parecía justo.

Ahora se hace una especie de "subasta". Se van ajustando los precios hasta que todos aceptamos :-)

Por eso me he metido a la noticia, porque me parece útil e interesante, pero es malísima.
comentarios cerrados

menéame