221 meneos
10837 clics

Por qué 2 y 2 son 4

Si de algo se tacha a las matemáticas en la sociedad es de ser completamente exactas; de decir verdades como puños, vamos. Y si de verdades matemáticas hablamos, la primera que nos viene a la cabeza es lo que todos aprendemos de pequeños: 2+2=4. Pero claro... cuando dices que eres matemático, una de las primeras cosas que te suelen preguntar es ¿y por qué 2+2=4?
etiquetas: matemáticas, divulgación
usuarios: 111   anónimos: 110   negativos: 1  
62comentarios mnm karma: 507
  1. #1   Es tan simple como que 3 x 8 son 24 y no viceversa
    votos: 0    karma: 7
  2. #2   Cuando he visto el titular me he imaginado por donde iba la cosa y, en efecto, esa fue la forma en que estudie hace ya más de 20 años los fundamentos de la aritmética.
    votos: 1    karma: 27
  3. votos: 4    karma: 45
  4. #4   Porque está en base 10 :-D
    votos: 8    karma: 50
  5. #5   #4 También podría estar en base 5 :-P

    Depende del ¿anillo? ¿cuerpo? y de como se definan las operaciones :-P
    votos: 5    karma: 48
     *   MAD-Max MAD-Max
  6. #6   Yo he visto por ahí una demostración por reducción al absurdo:

    Suponemos que 2+2!=4, con lo cual tenemos que 2!=4-2 o lo que es lo mismo 2!=2 QED

    No sé si será correcta una demostración tan simple
    votos: 2    karma: 10
     *   Campechano Campechano
  7. #7   #6 Para que fuese cierta, es necesario demostrar previamente que 4-2=2...
    votos: 18    karma: 153
  8. #8   2+2=11 (en base 3)

    4 es el nombre que se le puso al siguiente del siguiente del siguiente de "uno"
    votos: 5    karma: 54
     *   portera portera
  9. #9   #7 Eso mismo pensaba yo
    votos: 1    karma: 19
  10. #10   #8 s. De hecho, en el artículo así está definido 4. La demostración es independiente de la base.
    votos: 3    karma: 35
  11. #11   Por qué 2 y 2 son 4

    Como decía mi profesor cada vez que le ponias en un aprieto: Esto es así por definición :-D
    votos: 2    karma: 30
  12. #12   Como decimos los contables......2+2.....cuanto quieres que sea?
    votos: 16    karma: 138
  13. #13   ¿Por qué 1 es 1 y 2 es 2?, esta sería la primera cuestión a analizar...
    votos: 3    karma: 46
  14. #14   Puntualizo: el artículo utiliza incorrectamente el término "axioma" cuando habla del "axioma de Euclides". Se trata del postulado de Euclides. De existir demostración para ese postulado se hubiera llamado "teorema de Euclides". Lo que sucede es que en la literatura anglosajona se confunden habitualmente ambos términos.
    votos: 5    karma: 46
     *   gustavocarra gustavocarra
  15. #15   Sí, el que no entienda que 2+2=4 va a entender la demostración ... de cojones
    votos: 15    karma: 117
  16. #16   #13 No, la cosa es por qué 0+0 es 0.
    votos: 0    karma: 10
  17. #17   Estas son las demostraciones metematicas que odiaba en el instituto y en la universidad.
    Si yo me lo creo, no hace falta que me lo demuestres y menos q luego te lo demuestre yo :-P
    votos: 2    karma: 24
  18. #18   Digo más: A es A.
    votos: 3    karma: 33
  19. #19   #16 En esta "versión" el 0 no cuenta:

    P3.- El 1 no es el sucesor de ningún otro número natural.
    votos: 2    karma: 34
  20. #20   Joder, he dejado de leer cuando ha empezado con las fórmulas... y mira que le puse ganas.
    votos: 2    karma: 21
  21. #21   Relacionada:
    Viñeta: Forges - 22 de enero de 2013
    www.meneame.net/story/vineta-forges-22-ene-2013
    votos: 1    karma: 23
  22. #23   Eso fue lo que di en mi primera clase de la universidad. Qué tiempos, jeje.
    votos: 2    karma: 24
  23. #24   Soy el unico que piensa que los matematicos en sus diferentes manuales o examenes se hacen los interesantes
    votos: 8    karma: 60
  24. #25   #0 Formalmente errónea por incompleta, en lenguaje matemático estricto.

    Veamos como se explica eso en lenguaje coloquial: las matemáticas son una serie de operaciones lógicas que partiendo de una base determinada sirven para montar un conjunto lógico de construcciones planificadas en pasos sucesivos que se contienen.

    De ese modo, en la explicación que se quiere realizar de 2+2=4, que sería la construcción planificada a montar, se parte de una base determinada que son los teoremas sobre el conjunto de los números naturales, y se construyen en etapas sucesivas la lógica que lleva al resultado mencionado. Pues bien, en este caso falla por incompleta ya que describe perfectamente la parte numérica pero no hace lo mismo con la parte operacional de la construcción al no describir la operación suma.

    QED

    P.D. Y, como sugiere al final del artículo, 2+2=4 en sistema decimal; pero por ejemplo en sistema ternario 2+2=11

    www.luventicus.org/articulos/02A035/index.html
    es.wikipedia.org/wiki/Sistema_ternario
    votos: 3    karma: 9
     *   alehopio alehopio
  25. #26   porque no eres fran perea.
    votos: 3    karma: 31
  26. #27   #4 #5 2+2=4 en cualquier base en la que exista el 4, y como no puede estar en otra base porque el 4 está de hecho en la igualdad, pues 2+2=4.
    votos: 4    karma: 41
  27. #28   Hace años mi profesor de matemáticas me dijo que en realidad era un ejercicio de fe. Que para demostrarlo ya estaban ellos.
    votos: 1    karma: 18
  28. #29   #20 te pasa como a mí, si alguien me preguntara "¿por qué 2+2 =4?" creo que contestaría "¿pero tu eres tonto?"
    votos: 1    karma: 18
  29. #31   #1 8*3 no son 24? Anonadada me dejas!
    votos: 5    karma: 45
  30. #32   #27 NO.

    No sólo depende de la base numérica elegida, como indico en #25, sino que también depende de la parte operacional ya que el símbolo ( + ) puede representar la suma de números naturales pero también puede representar otras operaciones cuyo resultado sea diferente.

    Y, por supuesto, contando con que se usa la lógica simbólica general en donde el símbolo ( = ) define la igualdad entre números.
    es.wikipedia.org/wiki/L%C3%B3gica_matem%C3%A1tica
    votos: 0    karma: 10
  31. #33   #25 Edit, leí binario y no ternario :-P
    votos: 0    karma: 8
     *   Octabvious Octabvious
  32. #34   qué sencillez!
    votos: 1    karma: 18
  33. #35   Pues yo de pequeñito aprendí que 2 y 2 son 22 :-P
    votos: 2    karma: 25
  34. #36   Como 2 + 2 terminó siendo igual a 5.


    www.anfrix.com/2007/04/como-2-2-termino-siendo-igual-a-5/
    votos: 1    karma: 21
  35. #37   #32 Y también podría estar usando otro lenguaje que parece español pero en realidad está contando otra cosa distinta...
    votos: 2    karma: 19
  36. #38   #25 La operación suma está definida:

    Definición: Sean n€N
    Se define n+1=n*
    Si m€N y suponemos conocido n+m, entonces n+m*=(n+m)*.
    votos: 4    karma: 49
  37. #39   #12 Triste pero cierto
    votos: 1    karma: 19
  38. #40   #37 Esa opción está incluida en el uso de la lógica simbólica general que mencionaba al final del comentario. Incluso eso incluye en que un interlocutor sea un humano con formación y otro un burro con inteligencia (me reservo el papel del burro porque lo de pertenecer a la raza humana cada día desespera más).
    votos: 1    karma: 22
  39. #41   #32 Yo estaba contestando a unos comentarios que asumían todo eso y hablaban de la base en la que estén expresados los números, y sigo manteniendo que la igualdad es correcta para cualquier base que admita los símbolos 2 y 4. Sí, 2+2=11 en ternario, pero no tiene sentido decir que 2+2=4 es falso en ternario porque, al incluir el 4, esa expresión necesariamente no es ternario.
    votos: 0    karma: 7
  40. #42   #12 bárcenas, te hemos pillado en menéame!
    votos: 2    karma: 28
  41. #43   Por eso siempre me han caido mal los matemáticos (que no las matemáticas), para demostrar una premisa simple utilizan choporrocientas premisas complejas no demostradas previamente, y si pides que demuestren una de esas premisas utilizan más premisas no demostradas ad infinitum.

    Se supone que las matemáticas son exactas y dan respuestas, pero planteadas así parecen un programa de Iker Jimenez.
    votos: 0    karma: 7
  42. #44   #38 Eso no define la operación suma. Eso define n* mediante la operación suma de 1, pero previamente no se ha definido lo que es la operación suma de números naturales partiendo únicamente de la base que toma la estructura que se pretende construir, los Axiomas de Peano, ya que de la teoría de conjuntos se necesita la parte de las funciones y no sólo la parte de los números. En realidad n+1=n* sería un axioma más y formalmente es incorrecto llamarlo definición, pero es un error muy extendido...

    #41 Te olvidas de que partimos del resultado 2+2=4 y queremos ver su validez, no al revés tener 2 + 2 y ver el resultado. En sistema ternario 2+2=4 es invalido (como también es inválido en sistema ternario 2+2<>4), o al revés 2+2=11 en sistema ternario.

    Es decir, pongamos que yo te digo que incuestionablemente ( 2 + 2 = ✉ ) si entonces tu me contestas que en la sede del PP seguramente sí pero que eso no es válido en todos los sitios, y yo te digo que sólo es válido en la sede del PP que es el único sitio donde ✉ es algo común: pues estaría faltando a la lógica ya que no es "incuestionable" que era lo que discutíamos (no el hecho de que la operación sea en negro).
    votos: 0    karma: 10
     *   alehopio alehopio
  43. #45   #43 En la mayoría de los casos las demostraciones se hacen utilizando premisas más básicas.
    votos: 0    karma: 12
  44. #46   Esto me recuerda a una clase de matemáticas en una de las ingenierías en España:

    -En la primera clase el profesor imparte los 5 Axiomas de Peano.
    Algún alumno comienza a arrascarse la cabeza.

    -En la segunda clase el profesor se emociona con la Proposición1 y la Proposición2. Son importantísimas.Sobre todo para aplicar los Axiomas de Peano explicadas en la clase anterior.
    Casi todos los alumnos lo siguen, pero alguno no entiende que tiene que ver Peano en todo esto.
    Otros siguen arrascándose la cabeza.


    -En la tercera clase el profesor hablar sobre la generalización de "n contenido en N".Si Peano era Dios, "n*" es su padre. Ni "Darveidar" ni ostias.
    Varios flipan con la estrella. Uno comenta algo de la Estrella de la muerte.
    Otros ya no van a clase.


    -En la cuarta clase el profesor va ajustadito de temario,decide traerse el PPT de casa, imparte de una tacada la Proposición3,la definición 2=1*,el Teorema de 1+1=2, con demostraciones y relaciones con los Griegos,los Sumerios y los Árabes. En 5 minutos lo despacha con el PPT de 40 slides que trae de casa.
    Unos piensan en la Proposición3 de la rubia de la quinta fila.
    Otros suspiran diciendo que qué demonios hacen en Ingeniería.


    -El profesor concluye la cuarta clase con varios ejercicios teorico-practicos.
    2+3=5
    1*+2*=1*+(1*)*=Aplicamos Corolario 1/Proposicion4/Proposición3/...¿Os habéis perdido?.../Proposicion2/Corolario2/Definicion de 5=(3*)*/Corolario3/Cambio de Proposición...PisPas...20minutos mas tarde..PisPas/Aplicamos 4=(2*)*/Pispas... (1*)+(2*)*-1=5

    Para aclarar conceptos, repite con 2+4=7
    Esto es más rapido porque tira del Corolario2/3/4 que ha demostrado antes, pilla los Axiomas se los mete a las Proposiciones, coge a la rubia, se cepilla..a un par de Definiciones como que 7=(3*)*+(1*)*. Y listo.
    Bueno, realmente le falta el último paso pero ya se ha acabado la clase y lo deja para que lo demuestren sus alumnos en casa.
    Realmente le importa un cojón que lo hagan o no.

    Los pocos que quedan en clase, flipan, pero tras dos tardes de estudio son capaces de entender las demostraciones.
    Otros están agarrados a la rubia...de Cruzcampo.


    Llega el día del exámen.
    Todos esperan que caiga un Polinomio de Taylor, un Green, Stock-k-es, o el maravilloso mundo de la suma.
    Asi que cuando leen el siguiente enunciado, todos suspiran aliviados...
    "Partiendo de los Axiomas de Peano,aplicando las Proposiciones 1,2,3.Por favor, demuestre que
    4*3=12 "
    Algunos comienzan a descomponerse..

    Eso sí, los profes,majos ellos,añaden una Nota aclaratoria:

    Nota:En este caso el * no es un operador "Sucesor" sino el operador multiplicación.El de toda la vida.Vamos.
    Las risitas nerviosas de los alumnos resuenan en los sotanos lúgubres de la ETSI.

    Pero el estudiante sabe que lo mejor está por venir:

    Madre:¿Como te ha salido el exámen?
    Estudiante: Creo que me han cascado..
    Madre: ¿Era muy dificil?
    Estudiante: Bueno...sí...esto...no...4*3
    LaAbuela: ¿Y cuando vas a arreglarme el TV?
    ElProfesor: ¡Y estos chavales!Posnolespongo 4*3 y no saben demostrarme que son 12.Los Tontones riendo.

    Algo así recuerdo yo en mis clases de ingenieros.
    Pero no me hagáis mucho caso.
    Tal vez me dejó traumatizado.
    votos: 10    karma: 92
     *   ingenieril ingenieril
  45. #47   #44, claro que eso define la suma: por inducción.

    Introducción a la Lógica, Capítulo 1, Apartado 1, Demostraciones por inducción.
    votos: 2    karma: 21
  46. #48   #13 1 se define como el elemento inicial de N. Es el único elemento, por definición, que no tiene antecesor.
    El 2 está también definido como el sucesor de 2.
    votos: 0    karma: 9
  47. #49   Con lo fácil que era definir directamente 4:= 2 + 2.
    votos: 0    karma: 6
  48. #50   #45 Mira en este meneo por ejemplo, entre otras cosas da por hecho que todo numero natural tiene un sucesor, puede parecer algo obvio, como que 2+2=4, pero demostrarlo llevaría a sin duda a otras premisas obvias pero no demostradas, y asi, lo que debería ser un camino de acercamiento a los axiomas se convierte en justo lo contrario, si el axioma fuese la raiz del arbol de esta forma no estamos bajando hacia ella, estamos subiendonos por las ramificaciones cada vez más numerosas y alejadas.

    Desde el punto de vista lógico me parece falaz enseñar matemáticas asi, como si este ejercicio fuese una explicación, no es una explicación, es una equivalencia a nivel arbitrario de un supuesto a partir de otros supuestos derivados.

    Y ahora me voy a tomar mi pastilla.
    votos: 3    karma: 34
  49. #53   #4, #27, independientemente de la base en la que se esté, 2 + 2 = 4 puesto que estamos hablando de lo que suman dichos números, no de cómo se escriben. Cambiar de base solo cambia la forma de escribir los números, no las operaciones.
    votos: 1    karma: 16
  50. #54   #48 2 como sucesor de 1. Te cito no por corregirte, que ya sé que ha sido una errata en el comentario, pero para aclararlo para el que ande un poco perdido.
    votos: 2    karma: 22
  51. #55   #54 OUCH!!!! gracias.
    votos: 1    karma: 16
  52. #56   Para los que piensan que esto es artificial, aquí va mi opinión.

    Sí. Es cierto. Es artificial.

    Pero la belleza de las matemáticas radica, en parte, en que ha sido capaz de mirarse a sí misma e indagar en las más profundas raíces de su ser. Y no sólo mirarse sino tratar de fundamentarlas.
    LAs Matemáticas son tan HUMILDES que ha puesto de manifiesto incluso su propia inconsistencia. Y todos los matemáticos nos hemos enorgullecido de eso.

    ¿Qué otra disciplina científica ha tenido esta oportunidad?
    votos: 2    karma: 25
  53. #57   Como dijo un profesor en negociaciones: 2+2 son lo que acuerden las dos partes :-D
    votos: 0    karma: 10
  54. #58   Porque 4 y 2 son 6.
    votos: 0    karma: 9
  55. #59   Pues según Fran Perea 1+1=7
    votos: 1    karma: 0
  56. #60   #59 Perdón por el voto negativo... me confundí al darle, sólo quería responderte. Lo siento.

    Lo que quería decir es: SI supieras lo que me costó encontrar una imagen que no hiciera referencia a Fran Perea o a Los Serrano haciendoo una búsqueda en google del tipo "uno mas uno" ó "1+1"....
    votos: 0    karma: 9
  57. #61   Fran Perea no se equivocaba...
    votos: 0    karma: 5
  58. #62   #47 Definir algo que no se dice qué es resulta ser un axioma y no una definición matemática.
    ¿qué es una operación según los axiomas de Peano?
    votos: 0    karma: 10
     *   alehopio alehopio
comentarios cerrados

menéame